## Midterm Exam Calculus 2

18 March 2019, 9:00-11:00

The exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $[8+7+5$ Points. $]$

Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined as

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array}\right.
$$

(a) Use the definition of partial derivatives to calculate $f_{x}(0,0)$ and $f_{y}(0,0)$.
(b) Let $a \in \mathbb{R}$ with $a \neq 0$, and let $\mathbf{r}(t)=(t, a t)$. Show that the composite function $f \circ \mathbf{r}: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $t=0$.
(c) Compute $\nabla f(0,0) \cdot \mathbf{r}^{\prime}(0)$. Reconcile this result with your result in part (b) to conclude on the differentiability of $f$ at $(x, y)=(0,0)$.
2. $[\mathbf{1 0}+5+\mathbf{1 0}$ Points.]

Consider the curve parametrized by $\mathbf{r}:[0,1] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=(t \cos t-\sin t) \mathbf{i}+(t \sin t+\cos t) \mathbf{j}+\mathbf{k}
$$

(a) Determine the parametrization by arc length.
(b) For each point on the curve, determine a unit tangent vector.
(c) At each point on the curve, determine the curvature of the curve.
3. $[10+10+5$ Points. $]$
(a) Use the method of Lagrange multipliers to find the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$ where $f(x, y, z)=x+y-z$ assumes its maximum value and its minimum value, respectively.
(b) Show that the tangent plane of the unit sphere at the point $\left(x_{1}, y_{1}, z_{1}\right)$ is given by the equation $f(x, y, z)=f\left(x_{1}, y_{1}, z_{1}\right)$ and the tangent plane of the unit sphere at the point $\left(x_{2}, y_{2}, z_{2}\right)$ is given by the equation $f(x, y, z)=f\left(x_{2}, y_{2}, z_{2}\right)$.
(c) Let $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$. Show that $f$ agrees with its linearization at $\left(x_{0}, y_{0}, z_{0}\right)$.

## 4. [20 Points.]

Determine

$$
\iiint_{W}\left(2+\sqrt{x^{2}+y^{2}}\right) \mathrm{d} V
$$

where $W=\left\{(x, y, z) \in \mathbb{R}^{3} \mid 2\left(x^{2}+y^{2}\right)^{1 / 2} \leq z \leq 1\right\}$.

## Solutions

1. (a) Following the definition, the partial derivative of $f$ with respect to $x$ at $(x, y)=$ $(0,0)$ is

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h^{2}}{h^{2}+0^{2}}-0}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

Similarly

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0^{2} \cdot h}{0^{2}+h^{2}}-0}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

(b) Let $g=f \circ \mathbf{r}$. Then

$$
g(t)=\left\{\begin{array}{cc}
\frac{a t^{3}}{t^{2}+a^{2} t^{2}} & \text { if } t \neq 0 \\
0 & \text { if } t=0
\end{array}\right.
$$

For the differentiability of $g$ at $t=0$ consider for $h \neq 0$, the difference quotient

$$
\frac{g(h)-g(0)}{h}=\frac{\frac{a h^{3}}{h^{2}+a^{2} h^{2}}-0}{h}=\frac{a h^{3}}{h^{3}+a^{2} h^{3}}=\frac{a}{1+a^{2}}
$$

As the difference quotient has a limit for $h \rightarrow 0$ we conclude that $g$ is differentiable at $t=0$ and the derivative is $g^{\prime}(0)=\frac{a}{1+a^{2}}$.
(c) From part (a) we have $\nabla f(0,0)=(0,0)$. We have $\mathbf{r}^{\prime}(0)=(1, a)$. So $\nabla f(0,0)$. $\mathbf{r}^{\prime}(0)=0$. If $f$ would be differentiable at $(x, y)=(0,0)$ then by the Chain Rule the derivative of $f \circ \mathbf{r}$ at $t=0$ would be $\nabla f(0,0) \cdot \mathbf{r}^{\prime}(0)=0$ which does not agree with the result in part (b). We conclude that $f$ is not differentiable at $(x, y)=(0,0)$.
2. (a) The tangent vector
$\mathbf{r}^{\prime}(t)=(\cos t-t \sin t-\cos t) \mathbf{i}+(\sin t+t \cos t-\sin t) \mathbf{j}+0 \mathbf{k}=-t \sin t \mathbf{i}+t \cos t \mathbf{j}$ has length

$$
\left\|\mathbf{r}^{\prime}(t)\right\|\left|=\left((-t \sin t)^{2}+(t \cos t)^{2}\right)^{1 / 2}=\left(t^{2}\right)^{1 / 2}=|t|=t\right.
$$

where we used that $t \in[0,1]$ and hence $t$ is positive in the last equality. The arc length is hence

$$
s(t)=\int_{0}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| \mathrm{d} \tau=\int_{0}^{t} \tau \mathrm{~d} \tau=\frac{1}{2} t^{2}
$$

Note that $s(0)=0$ and $s(1)=\frac{1}{2}$ where the latter is the length of the curve. Inverting for $t$ gives

$$
t(s)=\sqrt{2 s}
$$

The parametrization by arc length is hence given by

$$
\tilde{\mathbf{r}}(s)=\mathbf{r}(t(s))=(\sqrt{2 s} \cos \sqrt{2 s}-\sin \sqrt{2 s}) \mathbf{i}+(\sqrt{2 s} \sin \sqrt{2 s}+\cos \sqrt{2 s}) \mathbf{j}+\mathbf{k}
$$

with $s \in\left[0, \frac{1}{2}\right]$.
(b) The unit tangent vector at the point $\mathbf{r}(t), t \in[0,1]$, is given by

$$
\mathbf{T}=\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|} \mathbf{r}^{\prime}(t)=\frac{1}{t}(-t \sin t \mathbf{i}+t \cos t \mathbf{j})=-\sin t \mathbf{i}+\cos t \mathbf{j}
$$

which agrees with

$$
\mathbf{T}=\frac{\mathrm{d} \tilde{\mathbf{r}}}{\mathrm{~d} s}(s)
$$

for $s=\frac{1}{2} t^{2}$.
(c) Viewing the unit tangent vector in part (b) to be given as a function of $s$ the curvature is given by

$$
\begin{aligned}
\kappa & =\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}\right\|=\left\|\frac{\mathrm{d}}{\mathrm{~d} s}(-\sin \sqrt{2 s} \mathbf{j}+\cos \sqrt{2 s} \mathbf{k})\right\| \\
& =\left\|-\frac{1}{\sqrt{2 s}} \sin \sqrt{2 s} \mathbf{j}+\frac{1}{\sqrt{2 s}} \cos \sqrt{2 s} \mathbf{k}\right\| \\
& =\frac{1}{\sqrt{2 s}}
\end{aligned}
$$

which for $t=\sqrt{2 s}$, agrees with

$$
\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}\right\| \frac{1}{\left\|\frac{\mathrm{dr}}{\mathrm{~d} t}\right\|}
$$

when viewing the unit tangent vector in part (b) as a function of $t$.
3. (a) Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$. Then the unit sphere is the level set of $g$ with value 1 . At an extremum of $f$ under the constraint $g(x, y, z)=1$ there is according to the theorem on Lagrange multipliers a $\lambda \in \mathbb{R}$ such that $\lambda \nabla f(x, y, z)=\nabla g(x, y, z)$. Together with the constraint $g(x, y, z)=1$ this gives the following four scalar equations:

$$
\begin{aligned}
\lambda f_{x}(x, y, z) & =g_{x}(x, y, z) \\
\lambda f_{y}(x, y, z) & =g_{y}(x, y, z) \\
\lambda f_{z}(x, y, z) & =g_{z}(x, y, z) \\
x^{2}+y^{2}+z^{2} & =1
\end{aligned}
$$

i.e.

$$
\begin{aligned}
\lambda & =2 x, \\
\lambda & =2 y \\
-\lambda & =2 z \\
x^{2}+y^{2}+z^{2} & =1
\end{aligned}
$$

We see that $x=y=-z$ which needs to be satisfied together with $x^{2}+y^{2}+z^{2}=1$ ( $\lambda$ is then given by, e.g., $2 x$ ). This leads to the two points

$$
\left(x_{1}, y_{1}, z_{1}\right)=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)
$$

and

$$
\left(x_{2}, y_{2}, z_{2}\right)=\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) .
$$

From the Weierstrass Extreme Value Theorem we know that $f$ assumes its maximum and minimum values on the unit sphere. From $f\left(x_{1}, y_{1}, z_{1}\right)=\sqrt{3}$ and $f\left(x_{2}, y_{2}, z_{2}\right)=-\sqrt{3}$ we see that $\left(x_{1}, y_{1}, z_{1}\right)$ is the point where $f$ assumes its maximum and $\left(x_{2}, y_{2}, z_{2}\right)$ is the point where $f$ assumes its minimum.
(b) The tangent plane of the unit sphere at $\left(x_{k}, y_{k}, z_{k}\right)$ is orthogonal to $\nabla g\left(x_{k}, y_{k}, z_{k}\right)$ for $k=1,2$. The tangent plane at $\left(x_{k}, y_{k}, z_{k}\right)$ is hence given by $\nabla g\left(x_{k}, y_{k}, z_{k}\right)$. $\left(x-x_{k}, y-y_{k}, z-z_{k}\right)=0$. For $\left(x_{1}, y_{1}, z_{1}\right)$ this gives

$$
\begin{aligned}
& 2\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) \cdot\left(x-\frac{1}{\sqrt{3}}, y-\frac{1}{\sqrt{3}}, z+\frac{1}{\sqrt{3}}\right)=0 \\
\Leftrightarrow & \frac{1}{\sqrt{3}} x-\frac{1}{3}+\frac{1}{\sqrt{3}} y-\frac{1}{3}-\frac{1}{\sqrt{3}} z-\frac{1}{3}=0 \\
\Leftrightarrow & x+y-z=\sqrt{3} .
\end{aligned}
$$

As $\sqrt{3}=f\left(x_{1}, y_{1}, z_{1}\right)$ we see that the tangent plane of the unit sphere at $\left(x_{1}, y_{1}, z_{1}\right)$ satisfies $f(x, y, z)=f\left(x_{1}, y_{1}, z_{1}\right)$.
Similarly for $\left(x_{x}, y_{x}, z_{x}\right)$ then tangent plane is given by

$$
\begin{aligned}
& 2\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \cdot\left(x+\frac{1}{\sqrt{3}}, y+\frac{1}{\sqrt{3}}, z-\frac{1}{\sqrt{3}}\right)=0 \\
\Leftrightarrow & -\frac{1}{\sqrt{3}} x-\frac{1}{3}-\frac{1}{\sqrt{3}} y-\frac{1}{3}+\frac{1}{\sqrt{3}} z-\frac{1}{3}=0 \\
\Leftrightarrow & x+y-z=-\sqrt{3} .
\end{aligned}
$$

As $-\sqrt{3}=f\left(x_{2}, y_{2}, z_{2}\right)$ we see that the tangent plane of the unit sphere at $\left(x_{2}, y_{2}, z_{2}\right)$ satisfies $f(x, y, z)=f\left(x_{2}, y_{2}, z_{2}\right)$.
(c) The linearization of $f$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\begin{aligned}
L(x, y, z) & =f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right) \\
& =x_{0}+y_{0}-z_{0}+1 \cdot\left(x-x_{0}\right)+1 \cdot\left(y-y_{0}\right)-1 \cdot\left(z-z_{0}\right) \\
& =x+y-z
\end{aligned}
$$

which agrees with $f(x, y, z)$.
4. The cylinder geometry suggests to use cylinder coordinates, i.e. $x=r \cos \theta, y=$ $r \sin \theta$ and $z$ stays $z$. Then

$$
\begin{aligned}
\iiint_{W}\left(2+\sqrt{x^{2}}+y^{2}\right) \mathrm{d} V & =\int_{0}^{1} \int_{1}^{z / 2} \int_{0}^{2 \pi}(2+r) r \mathrm{~d} \theta \mathrm{~d} r \mathrm{~d} z \\
& =2 \pi \int_{0}^{1} \int_{1}^{z / 2}(2+r) r \mathrm{~d} r \mathrm{~d} z \\
& =2 \pi \int_{0}^{1}\left(r^{2}+\left.\frac{1}{3} r^{3}\right|_{r=0} ^{r=z / 2}\right) \mathrm{d} z \\
& =2 \pi \int_{0}^{1}\left(\frac{1}{4} z^{2}+\frac{1}{24} z^{3}\right) \mathrm{d} z \\
& =2 \pi\left(\frac{1}{12} z^{3}+\left.\frac{1}{96} z^{4}\right|_{z=0} ^{z=1}\right) \\
& =2 \pi\left(\frac{1}{12}+\frac{1}{96}\right) \\
& =\frac{9}{48} \pi
\end{aligned}
$$

