
Midterm Exam Calculus 2

18 March 2019, 9:00-11:00

The exam consists of 4 problems. You have 120 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [8+7+5 Points.]

Let f : R2 → R be defined as

f(x, y) =

{
x2y
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

(a) Use the definition of partial derivatives to calculate fx(0, 0) and fy(0, 0).

(b) Let a ∈ R with a 6= 0, and let r(t) = (t, at). Show that the composite function
f ◦ r : R→ R is differentiable at t = 0.

(c) Compute ∇f(0, 0) · r′(0). Reconcile this result with your result in part (b) to
conclude on the differentiability of f at (x, y) = (0, 0).

2. [10+5+10 Points.]

Consider the curve parametrized by r : [0, 1]→ R3 with

r(t) = (t cos t− sin t) i + (t sin t+ cos t) j + k.

(a) Determine the parametrization by arc length.

(b) For each point on the curve, determine a unit tangent vector.

(c) At each point on the curve, determine the curvature of the curve.

3. [10+10+5 Points.]

(a) Use the method of Lagrange multipliers to find the points (x1, y1, z1) and (x2, y2, z2)
on the unit sphere x2 + y2 + z2 = 1 where f(x, y, z) = x + y − z assumes its
maximum value and its minimum value, respectively.

(b) Show that the tangent plane of the unit sphere at the point (x1, y1, z1) is given
by the equation f(x, y, z) = f(x1, y1, z1) and the tangent plane of the unit sphere
at the point (x2, y2, z2) is given by the equation f(x, y, z) = f(x2, y2, z2).

(c) Let (x0, y0, z0) ∈ R3. Show that f agrees with its linearization at (x0, y0, z0).

4. [20 Points.]

Determine ˚
W

(2 +
√
x2 + y2) dV,

where W = {(x, y, z) ∈ R3 | 2(x2 + y2)1/2 ≤ z ≤ 1}.



Solutions

1. (a) Following the definition, the partial derivative of f with respect to x at (x, y) =
(0, 0) is

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

h2·
h2+02

− 0

h
= lim

h→0
0 = 0.

Similarly

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

02·h
02+h2

− 0

h
= lim

h→0
0 = 0.

(b) Let g = f ◦ r. Then

g(t) =

{
at3

t2+a2t2
if t 6= 0

0 if t = 0
.

For the differentiability of g at t = 0 consider for h 6= 0, the difference quotient

g(h)− g(0)

h
=

ah3

h2+a2h2
− 0

h
=

ah3

h3 + a2h3
=

a

1 + a2
.

As the difference quotient has a limit for h → 0 we conclude that g is differen-
tiable at t = 0 and the derivative is g′(0) = a

1+a2
.

(c) From part (a) we have ∇f(0, 0) = (0, 0). We have r′(0) = (1, a). So ∇f(0, 0) ·
r′(0) = 0. If f would be differentiable at (x, y) = (0, 0) then by the Chain Rule
the derivative of f ◦ r at t = 0 would be ∇f(0, 0) · r′(0) = 0 which does not
agree with the result in part (b). We conclude that f is not differentiable at
(x, y) = (0, 0).

2. (a) The tangent vector

r′(t) = (cos t− t sin t− cos t) i+ (sin t+ t cos t− sin t) j+ 0k = −t sin t i+ t cos t j

has length

‖r′(t)‖| =
(
(−t sin t)2 + (t cos t)2

)1/2
=
(
t2
)1/2

= |t| = t ,

where we used that t ∈ [0, 1] and hence t is positive in the last equality. The arc
length is hence

s(t) =

ˆ t

0

|r′(τ)| dτ =

ˆ t

0

τ dτ =
1

2
t2.

Note that s(0) = 0 and s(1) = 1
2

where the latter is the length of the curve.
Inverting for t gives

t(s) =
√

2s.

The parametrization by arc length is hence given by

r̃(s) = r(t(s)) = (
√

2s cos
√

2s− sin
√

2s) i + (
√

2s sin
√

2s+ cos
√

2s) j + k

with s ∈ [0, 1
2
].



(b) The unit tangent vector at the point r(t), t ∈ [0, 1], is given by

T =
1

‖r′(t)‖
r′(t) =

1

t
(−t sin t i + t cos t j) = − sin t i + cos t j

which agrees with

T =
dr̃

ds
(s)

for s = 1
2
t2.

(c) Viewing the unit tangent vector in part (b) to be given as a function of s the
curvature is given by

κ =

∥∥∥∥dT

ds

∥∥∥∥ =

∥∥∥∥ d

ds

(
− sin

√
2s j + cos

√
2sk

)∥∥∥∥
=

∥∥∥∥− 1√
2s

sin
√

2s j +
1√
2s

cos
√

2sk

∥∥∥∥
=

1√
2s

which for t =
√

2s, agrees with ∥∥∥∥dT

dt

∥∥∥∥ 1∥∥dr
dt

∥∥
when viewing the unit tangent vector in part (b) as a function of t.

3. (a) Let g(x, y, z) = x2+y2+z2. Then the unit sphere is the level set of g with value 1.
At an extremum of f under the constraint g(x, y, z) = 1 there is according to the
theorem on Lagrange multipliers a λ ∈ R such that λ∇f(x, y, z) = ∇g(x, y, z).
Together with the constraint g(x, y, z) = 1 this gives the following four scalar
equations:

λfx(x, y, z) = gx(x, y, z),
λfy(x, y, z) = gy(x, y, z),
λfz(x, y, z) = gz(x, y, z),
x2 + y2 + z2 = 1

i.e.
λ = 2x,
λ = 2y,
−λ = 2z,

x2 + y2 + z2 = 1.

We see that x = y = −z which needs to be satisfied together with x2+y2+z2 = 1
(λ is then given by, e.g., 2x). This leads to the two points

(x1, y1, z1) =
( 1√

3
,

1√
3
,− 1√

3

)
and

(x2, y2, z2) =
(
− 1√

3
,− 1√

3
,

1√
3

)
.

From the Weierstrass Extreme Value Theorem we know that f assumes its max-
imum and minimum values on the unit sphere. From f(x1, y1, z1) =

√
3 and

f(x2, y2, z2) = −
√

3 we see that (x1, y1, z1) is the point where f assumes its
maximum and (x2, y2, z2) is the point where f assumes its minimum.



(b) The tangent plane of the unit sphere at (xk, yk, zk) is orthogonal to ∇g(xk, yk, zk)
for k = 1, 2. The tangent plane at (xk, yk, zk) is hence given by ∇g(xk, yk, zk) ·
(x− xk, y − yk, z − zk) = 0. For (x1, y1, z1) this gives

2
( 1√

3
,

1√
3
,− 1√

3

)
·
(
x− 1√

3
, y − 1√

3
, z +

1√
3

)
= 0

⇔ 1√
3
x− 1

3
+

1√
3
y − 1

3
− 1√

3
z − 1

3
= 0

⇔ x+ y − z =
√

3.

As
√

3 = f(x1, y1, z1) we see that the tangent plane of the unit sphere at
(x1, y1, z1) satisfies f(x, y, z) = f(x1, y1, z1).

Similarly for (xx, yx, zx) then tangent plane is given by

2
(
− 1√

3
,− 1√

3
,

1√
3

)
·
(
x+

1√
3
, y +

1√
3
, z − 1√

3

)
= 0

⇔ − 1√
3
x− 1

3
− 1√

3
y − 1

3
+

1√
3
z − 1

3
= 0

⇔ x+ y − z = −
√

3.

As −
√

3 = f(x2, y2, z2) we see that the tangent plane of the unit sphere at
(x2, y2, z2) satisfies f(x, y, z) = f(x2, y2, z2).

(c) The linearization of f at (x0, y0, z0) is given by

L(x, y, z) = f(x0, y0, z0) + fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0)
= x0 + y0 − z0 + 1 · (x− x0) + 1 · (y − y0)− 1 · (z − z0)
= x+ y − z

which agrees with f(x, y, z).

4. The cylinder geometry suggests to use cylinder coordinates, i.e. x = r cos θ, y =
r sin θ and z stays z. Then

˚
W

(2 +
√
x2 + y2) dV =

ˆ 1

0

ˆ z/2

1

ˆ 2π

0

(2 + r) rdθdrdz

= 2π

ˆ 1

0

ˆ z/2

1

(2 + r)r drdz

= 2π

ˆ 1

0

(
r2 +

1

3
r3
∣∣∣∣r=z/2
r=0

)
dz

= 2π

ˆ 1

0

(
1

4
z2 +

1

24
z3
)

dz

= 2π

(
1

12
z3 +

1

96
z4
∣∣∣∣z=1

z=0

)

= 2π

(
1

12
+

1

96

)
=

9

48
π .


